Symmetric skew braces and brace systems

Valeriy G. Bardakov 1
Mikhail V. Neshchadim 2
Manoj K. Yadav 3
Publication typeJournal Article
Publication date2023-02-28
scimago Q1
wos Q2
SJR0.868
CiteScore1.7
Impact factor0.9
ISSN09337741, 14355337
General Mathematics
Applied Mathematics
Abstract

For a skew left brace ( G , , ) {(G,\cdot\,,\circ)} , the map λ : ( G , ) Aut ( G , ) {\lambda:(G,\circ)\to\operatorname{Aut}(G,\cdot\,)} , a λ a , {a\mapsto\lambda_{a},} where λ a ( b ) = a - 1 ( a b ) {\lambda_{a}(b)=a^{-1}\cdot(a\circ b)} for all a , b G {a,b\in G} , is a group homomorphism. Then λ can also be viewed as a map from ( G , ) {(G,\cdot\,)} to Aut ( G , ) {\operatorname{Aut}(G,\cdot\,)} , which, in general, may not be a homomorphism. A skew left brace will be called λ-anti-homomorphic (λ-homomorphic) if λ : ( G , ) Aut ( G , ) {\lambda:(G,\cdot\,)\to\operatorname{Aut}(G,\cdot\,)} is an anti-homomorphism (a homomorphism). We mainly study such skew left braces. We device a method for constructing a class of binary operations on a given set so that the set with any two such operations constitutes a λ-homomorphic symmetric skew brace. Most of the constructions of symmetric skew braces dealt with in the literature fall in the framework of our construction. We then carry out various such constructions on specific infinite groups.

Found 
Found 

Top-30

Journals

1
Communications in Algebra
1 publication, 33.33%
Теоретическая и математическая физика
1 publication, 33.33%
Journal of Geometry and Physics
1 publication, 33.33%
1

Publishers

1
Taylor & Francis
1 publication, 33.33%
Steklov Mathematical Institute
1 publication, 33.33%
Elsevier
1 publication, 33.33%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Cite this
GOST |
Cite this
GOST Copy
Bardakov V. G., Neshchadim M. V., Yadav M. K. Symmetric skew braces and brace systems // Forum Mathematicum. 2023.
GOST all authors (up to 50) Copy
Bardakov V. G., Neshchadim M. V., Yadav M. K. Symmetric skew braces and brace systems // Forum Mathematicum. 2023.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1515/forum-2022-0134
UR - https://doi.org/10.1515/forum-2022-0134
TI - Symmetric skew braces and brace systems
T2 - Forum Mathematicum
AU - Bardakov, Valeriy G.
AU - Neshchadim, Mikhail V.
AU - Yadav, Manoj K.
PY - 2023
DA - 2023/02/28
PB - Walter de Gruyter
SN - 0933-7741
SN - 1435-5337
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Bardakov,
author = {Valeriy G. Bardakov and Mikhail V. Neshchadim and Manoj K. Yadav},
title = {Symmetric skew braces and brace systems},
journal = {Forum Mathematicum},
year = {2023},
publisher = {Walter de Gruyter},
month = {feb},
url = {https://doi.org/10.1515/forum-2022-0134},
doi = {10.1515/forum-2022-0134}
}